ABS Data Compressing Kickoff Meeting - Status, Future Work, and Roadmap

Allen Huang

CIMSS/SSEC, University of WI-Madison

ABSTARCT

ABS will produce unprecedented volume of information rich atmospheric and environmental remote sensing data. In this part 1 presentation we are reviewing the current progress/approach of data compression and noise estimate. The future work to achieve both ground-based and on-board ABS data compression needs are also conversed. A roadmap designed to cover the end-to-end study needs is outlined as well.

Outlines

- Hyperspectral Data Information/Background
 - Data Volume; spectral, temporal, and gradient Inf. Con.
- GIFTS/NAST-I/AIRS data Compression Study Status
 - Will be discussed in details this afternoon
- Proposed Data Compression Approaches
 - Ground Based & On-board
 - Noise Estimation
- Roadmap for ABS Data compressing
 - Measurement Simulation, Data Compression Study,
 Defined Requirements, and Recommend Solution

ABS Hyperspectral IR Data -

What to Expect -> Lots more data than we can handle

ABS/GIFTS ~ 3000 ch. per IFOV

Hyperspectral Data Information Spectral Information -> Vertical Resolution

Hyperspectral Data Information Spectral Information -> Vertical Resolution

Hyperspectral Data Information Spectral Information -> Marco & Micro Cloud Property

Hyperspectral Data Information - Spatial Information -> Gradient

Hyperspectral Data Information Temporal Information -> Moisture Transport

Hyperspectral Data Information - Spectral Correlation -> Data Redundancy?

What is PCA?

- PCA is Principal Component Analysis, a classical approach to the problem of linear (independent) feature extraction
- PCA essentially performs Singular Value Decomposition of the Covariance Matrix
- For Gaussianly distributed input, PCA extracts statistically independent features

Why Principal Component Compression

(PCC) - Reason I : Noise Reduction

Green-Single Noise Spectrum Red-PCC Noise Spectrum

Why PCC - Reason II: Tunable Signal Loss

Number of PC used in Compression

Why PCC - Reason III : Discriminate

Uses of independent information only will improve retrieval performance

Why PCC - Reason IV : Consolidate

Measurement Information (~2000 to ~100)

Principal Component Compression (PCC)

Pros & Cons

Cons:

- 1. Requires PCA (Significant Computational Costs)
- 2. Requires Measurement Reconstruction
- 3. Representative Set Selection for PCs is an issue

Pros:

- 1. Noise Reduction/Estimation
- 2. Tunable Signal Loss
- 3. Discriminate Independent from Redundant Data
- 4. Increase Information Density
- 5. Intermediate Retrieval Processing step
- 6. Suitability to Available Computing Systems

Hyperspectral Data Processing - Why can we Estimate Noise Effectively -> Signal & Noise are Estimated Separately

1 - Signal under represented

2 - Signal well represented; Noise filtered

3 - Signal & noise both duplicated

Hyperspectral Data Processing - Why can we Estimate Noise Effectively ->

Noise are Well Estimated

ABS Measurement Simulation and Data Compression - Top Level Flow Diagram

ABS FTS Simulation

Input Calculated Top of Atmosphere Spectra

- Add Instrument Background
- Apply Instrument Responsivity
- Apply Numerical Filter
- Apply Instrument Line Shape Function
- Apply Off-axis Interferogram Sampling

Output ABS Interferograms or Spectra

ABS Measurement Noise Simulation

Example LW Interferogram with variable Gain and Offset

with effects

Parameterization of Ice and Liquid Cloud

Raw Data Spectral Correlation

100 PC Compressed Data Spectral Correlation

Raw Data Spectral Correlation

200 PC Compressed Data Spectral Correlation

Compression Residuals - Raw or Calibrated Domains

Interferogram

Radiance

Brightness Temp.

Definitions

Old DPC: Old Dependent Principal Component (fixed point segments)

New DPC: New Dependent Principal Component (Variable point segments)

New HPC: New Hybrid Dependent & Independent Principal Component (Variable point segments and PCs are derived from on-line dependent and off-line independent historical/pre-computed data)

Note: 1. New DPC achieves better compression than old DPC 2. New HPC requires much less on-board processing than New DPC but degrades compression performance

HPC Compression Impact on Retrieval - Cube 2

GIFTS Compression/Retrieval Analysis

Noise Free EV (NFEV) Vs. Noisy EV (NEV)

GIFTS Data Compression Retrieval Error

HPC On-board Compression Processing Requirement

- Computational Requirements
 - PC Generation
 - Mean: 2008*(41+1)=84336 flops=0.08 Mflops
 - COV : for 150*41*2 & 448*41 matrix -> 1.88*2+16.7 Mflops = 20.5 Mflops
 - SVD: 9.4*2+244 Mflops -> 262.8 Mflops
 - PC Compression
 - [630*(20+1)+150*(20+1)*2+448*(20+1)]*16384 -> 474 Mflops
 - Total = 0.08 + 20.5 + 262.8 + 474 = 757 Mflops

HPC On-Board Compression Processing Requirement

- Memory Requirements
 - PC Coefficients
 - Mean : 2008*16 = 0.03 Mbytes
 - COV: (630*630*16*2)+(150*150*16*2)+(448*448*16) = 16.62 Mbytes
 - PCs : 2*(20*630*16)+2*(20*150*16)+(20*448*16) = 0.64 Mbytes
 - Interferograms
 - Training : 41*2048*32 = 2.7 Mbytes
 - Cube data : 16384*2048*32 = 1073 Mbytes
 - Total = 1093 Mbytes

Onboard Computing Requirements

Calibration

- 4N + Nlog₂(N) order calculation per interferogram
- 15 ops per point LW; 16 ops per point S/MW
- Resampling from self-apodized state
 - 59N + 9Nlog₂(N) order calculation per interferogram
 - 158 ops per point LW; 167 ops per point S/MW
 - can be mitigated by pre-interpolating raw interferograms before filtering
- Compression by Principal Component Analysis
 - M*N order calculation per interferogram for M PCs
 - M=100 implies 100 ops per point

Implementation Roadmap for ABS Hyperspectral Data Compressing

Measurement Simulation:

Atmospheric Condition Modeling
TOA Radiance Modeling
Instrument Effect Modeling
Calibration Modeling

Processing
Implementation:
On-Board
Ground-Based
Validation

Data Compression Study:

Raw/Calibrated Spectral Domain
Raw/Calibrated Spatial Domain
Dependent/Independent Domain
PC/EOF/SVD Transformation Approach
Wavelets Transformation Approach
Quantization/Coding
On-board/Ground-Based

Responsibility Roadmap for ABS Data Compressing

NOAA/Government:

Defined User Needs
Set Requirement
Coordinate Industry &
Research Center

Instrument Expertise
Space Qualified Parts
Design/Implementation

Conduct Simulation
Conduct Processing Study
Define Processing Needs
Define Feasibility
Recommend Solution

Roadmap for ABS Data Compressing Study

- 1. Leveraging of NASA GIFTS on-board compression work
- 1-1. Processing Algorithm Continue to optimize DPCC approach
- 1-2. Processing Requirements Refine requirement for ABS efficient ground-based and on-board compression
- 1-3. Measurement/Products Impacts Reconfirm compression impacts on both level-1 and level-2 data

Roadmap for ABS Data Compressing Study - continue

- 2. Adapting GIFTS Compression work with Enhancement/Improvement
- 2-1. Test enhancement of numerical method of deriving DPCC used in GIFTS experiment
- 2-2. Test variety of similar (non-PC) numerical techniques and inter-compare their respective performance and efficiency
- 3. Comparing Image and Spectral Compression Technique
- 3-1. Compare product impact of image (I.e. JPG 2000) and interferogram/spectral domain compression

Roadmap for ABS Data Compressing Study - continue

- 4. Modeling ABS Instrument Measurements
- 4-1. Develop ABS specific radiative transfer model
- 4-2. Model ABS instrument outputs both signal & noise
- 4-3. Simulate ABS geo-orbital high temporal and spatially coherent measurements using high spatial resolution numerical model output and/or data cubes from field experiments
- 4-4. Modeling ABS pre-processing and calibration procedure
- 4-5. Provide ABS raw interferogram and calibrated spectral images

Roadmap for ABS Data Compressing Study - continue

- 5. Define Tradeoff Disadvantages/Benefits for "Lossless" and Lossy" Compression Approaches
- 6. Extended ABS compression study use not only the data transformation based compression approach and to include all other compression components
- 6-1. Data quantization
- 6-2. Data coding and decoding
- 7. Define Performance for both Ground-based and On-board Compression
- 8. Make Recommendations for ABS Operational Consideration for Data Downlink and Ground Data Redistribution

